<u>CLASS – XII</u>

SUBJECT : CHEMISTRY

MONTH :

Topic- d and f block

QUES NO	TYPE OF QUESTION (REASONING / MCQ / MATRIX / GRID / OTHER)	QUESTION	OPTION PROVIDED	CORRECT OPTION	EXPLANATION	% OF STUDENTS ATTEMPTED CORRECTLY
01	мсq	1.Electronicconfiguration of atransitionelement Xin +3oxidationstate is[Ar]3d 5.What is itsatomicnumber?	25 26 27 24	26	x3+ HAS THE ELECTRONIC CONFIGURATION [Ar]3d5. So it has 18+5=23 electrons. Therefore, X - atom has 23+3=26 electrons , and hence, its atomic number is 26.	
02	мсq	2 The electronic configurati on of Cu(II) is 3d 9 whereas that of Cu(I)	(i) Cu(II) is mo (ii) Cu(II) is les (iii) Cu(I) and ((iv) Stability o	i	High hydration enthalpy	

		is <i>3d</i> 10. Which of the following is correct?			
03	MCQ	3 Metallic radii of some transition elements are given below. Which of these elements will have highest density? Element Fe Co Ni Cu Metallic radii/pm 126 125 125 128	Fe Ni Co Cu	Cu	On moving left to right along period, metallic radius decreases while mass increases. Decrease in metallic radius coupled with increase in atomic mass results in increase in density of metal. Hence Cu will have highest density.
04	MCQ	4 Generally transition elements form coloured salts due to the presence of unpaired electrons. Which of the following compounds will be coloured in solid state?	(i) Ag2SO 4 (ii) CuF2 ZnF2 Cu2Cl2	ii	Transition elements form coloured salt due to the presence of unpaired electrons. In CuF2, Cu(II) contain one unpaired electron hence, CuF2 is coloured in solid state.
05	МСQ	The correct answer is i Mn2O7Explanation:2KMnO4 + 2H2SO4 concentrated \rightarrow Mn2O7 + 2KHSO4 +	(i) Mn 20 7	iv	The correct answer is i Mn2O7Explanation:2KMnO4 + 2H2SO4 concentrated →

		H2OMn2O7 named ManganeseVII oxide or Manganese heptoxide is an inorganic compound which is highly explosive in nature.	Option 2 MnSO 4 (iv) Mn2O 3		Mn2O7 + 2KHSO4 + H2OMn2O7 named ManganeseVII oxide or Manganese heptoxide is an inorganic compound which is highly explosive in nature.
06	MCQ	6 The magnetic nature of elements depends on the presence of unpaired electrons. Identify the configuration of transition element, which shows highest magnetic moment.	3d7 3d5 3d8 3d2	ii	The magnetic nature of elements depends on the presence of unpaired electrons. 3d5 configuration of transition elements which shows highest magnetic moment as it has maximum number of unpaired electrons (5 unpaired electrons).
07	R & A		l li lii iv	ii	
08	МСQ		l li lii iv	i	Disproportionation reaction , also called dismutation reaction, is basically a type of redox reaction involving simultaneous reduction and oxidation of atoms of the same element from one oxidation state (OS) to two different oxidation states. Basically, one

				compound of intermediate oxidation state gets converted to two compounds, one with higher and the other with lower oxidation states. So, a species is simultaneously reduced and oxidised to form two different products.
09	A& R	l li lii iv	i	Both assertion and reason are true, and reason is the correct explanation of the assertion. Explanation: All halogens combine with copper to form copper halides except iodine. The reason behind this is that Cu A 2 + oxidises iodide (-1) to iodine (0).
10	A& R	l li lii iv	ii	Because it has positive electrode potential. Both assertion and reason are true, and reason is the correct explanation of the assertion.